11x^2=x^2+8

Simple and best practice solution for 11x^2=x^2+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 11x^2=x^2+8 equation:



11x^2=x^2+8
We move all terms to the left:
11x^2-(x^2+8)=0
We get rid of parentheses
11x^2-x^2-8=0
We add all the numbers together, and all the variables
10x^2-8=0
a = 10; b = 0; c = -8;
Δ = b2-4ac
Δ = 02-4·10·(-8)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{5}}{2*10}=\frac{0-8\sqrt{5}}{20} =-\frac{8\sqrt{5}}{20} =-\frac{2\sqrt{5}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{5}}{2*10}=\frac{0+8\sqrt{5}}{20} =\frac{8\sqrt{5}}{20} =\frac{2\sqrt{5}}{5} $

See similar equations:

| 4-8z=-9z | | 18–(a+2)=21 | | 3x−7=293x−7=29 | | -3x-3(6)=6 | | 4x+7(-x-14)=-164 | | -24=4(3+2n)-5n | | -3(2h+9)=31 | | w+8+3w=48 | | 3(53)+11=14y-4 | | 3/4(d+12)=1/2(2d-6) | | 4x+7(-x-14)=164 | | 3(u+2)+4=5(u-4)+u | | (50/50)x.20= | | H(x)=x+5=x2+3x-10 | | 4x+4(8)=8 | | -x+22-4x=-63 | | 11+2=5x+10 | | 3.25x+9=35 | | -(r-5)=-8 | | -+22-4x=-63 | | 0=6x^2-6x+6 | | 3(j-5)-3=4 | | 9-9q=-7q-5 | | 1/2a+3=9 | | 9(x+4)-2x(3)+6x(-2+3)=x-2 | | 7x-2(x-5)=9x+11 | | 2x+60+2+3x=-73 | | 144=-8(x+5) | | 3(4x+2)-3x=10x+8 | | Y/3+y=11 | | 3(4x+2)-3x=1x+1 | | .5x-7=8 |

Equations solver categories